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CLAY MINERALOGY OF PLEISTOCENE LAKE TECOPA,
INYO COUNTY, CALIFORNIA

By HARRY C. STARKEY and PAUL D. BLACKMON

ABSTRACT

Pleistocene Lake Tecopa in southeastern Inyo County, Calif., was
formed when the Amargosa River was blocked at the southern end
of its valley. The lake acted as a settling basin for detrital material
being transported by the river. This detritus consisted of clays,
quartz, feldspars, and micas which became mudstones and
siltstones. These mudstones and siltstones, much eroded and
dissected after the draining of the lake, extend over the entire basin
and are interbedded with tuffs formed by the intermittent deposi-
tion of volcanic ashfalls in the former lake waters. These light-
colored mudstones and siltstones are tough and well indurated and
break with a conchoidal fracture.

The predominant clay mineral in these detrital beds is a lithium-
bearing saponite, which is found not only in the lake beds but also in
the area beyond the boundaries of the lake, especially in fluvial
deposits in the drainage basin of the Amargosa River to the north.
This saponite does not contain enough lithium to be classified as a
hectorite, and we have observed no indications that this clay con-
sists of a mixture of two phases, such as hectorite and a diluent.

Some authigenic dioctahedral montmorillonite, found only in
small quantities close to the tuffs, was formed by alteration of the
volcanic glass of the tuffs and was then admixed with the overlying
or underlying detrital clays.

The only authigenic clay-type mineral found in any significant
quantity is sepiolite, found near the edges of the lake basin and
stratigraphically located mainly within a meter of the two upper-
most tuffs. This sepiolite probably was precipitated when silica
became available to the magnesium-bearing lake water through
dissolution of the volcanic ash. Precipitation of sepiolite probably
did not occur within the tuffs owing to the presence of alumina in
solution. Zeolites were produced there and sepiolite formed outside
the margins of the tuffs.

Also formed by the high-pH lake waters were water-soluble
minerals, which were found widely dispersed in crusts or streaks on
the clays. Much of the calcite was likely precipitated from the lake
waters, especially near the north end of the lake where calcium-
bearing fresh water came into contact with the CO.-rich lake waters.

Magadiite, a sodium silicate mineral reported only twice previous-
ly in the United States, was found in small quantities in the
southern end of the basin. This mineral is indicative of a minimum
pH of 8.5.

The authigenic minerals formed in the lake reflect the presence of
silica-rich tuffs and the high-pH, alkaline character of the lake
waters.

INTRODUCTION
LOCATION AND GEOGRAPHIC SETTING

The basin of former Pleistocene Lake Tecopa, in
southeastern Inyo County, Calif., is located in the Mo-
jave Desert about 32 km east of Death Valley National
Monument within Tps. 20, 21, and 22 N., and Rs. 6 and
7 E. The area is shown in figure 1. The nearest large ci-
ty is Las Vegas, Nev., which is located about 97 km to
the east.

The town of Shoshone is located in the northern part
of the basin, and the town of Tecopa is located in the
southern part; Shoshone is on State Route 127, which
runs generally north-south through the basin.

The lake basin is bounded on the west by Dublin
Hills, Ibex Hills, and the southern part of the Green-
water Range and on the east by the southern parts of
the Nopah Range and Resting Spring Range. To the
south are the Sperry Hills through which the
Amargosa River flows, draining the study area.

The lake beds cover an area about 18 by 23
kilometers. The elevation of lowest exposures of the
beds is at about 396 m near the south end of the lake,
and the highest beds are at about 549 m at the margins
of the lake. The hills and mountain ranges to the east
and west of the basin have elevations of about
914-1,219 m. Sperry Hills to the south are about
610-762 m above sea level.
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FIGURE 1.—Index and sample locality maps, Pleistocene Lake Tecopa drainage basin, California.
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Sample
Disaggregation, sieving, centrifugation Leaching of water-soluble material
Sand (>62 u) Silt (2-62 1) Clay (<2 u) Specific conductance Gravimetric measurements
l 1 of leachates of evaporated leachates
v
X-ray diffractio_n, X-ray diffraction,  X-ray diffraction, Oriented X-ray of
random orientation random orientation random orientation aggregate total sample,
random
Air drying  orientation

! l

X-ray diffraction X-ray diffraction

! I

Glycol treatment Heat to 400° C

| |

X-ray diffraction X-ray diffraction

I

Heat to 550° C

l

X-ray diffraction

! l

X-ray diffraction X-ray diffraction

| |

MgCl;-saturated

KCl-saturated !
i fraction

fraction

l

X-ray diffraction X-ray diffraction

l l

Glycerine treatment  Glycerine treatment

l l

X-ray diffraction X-ray diffraction

F1GURE 5.—Flow sheet illustrating procedures used for mineral identification.

sampling irregularities make comparisons of small
amounts subject to error.

Chemical determinations were made as needed when
X-ray determinations were inconclusive. For instance,
when single small peaks at 30.4° 26 on the diffraction
patterns indicated possible manganocalcite, the car-
bonates were removed by dilute hydrochloric acid.
Qualitative manganese determinations were made on
the resulting solutions.

The amount of amorphous material in the clay-size
fraction was difficult to estimate either optically or
from X-ray patterns. Therefore, samples appearing to
contain more than two parts in ten of amorphous
material were boiled for 2% minutes in 0.5 N sodium
hydroxide, according to Mallory’s (1965) method, and
the weight loss sustained was reported as amorphous
material, after the percentages of previously determin-
ed water-soluble material were subtracted.

Transmission electron micrographs (figs. 6-9) were
made to illustrate the morphology and to confirm the
presence of the different types of clay minerals. X-ray
diffractograms and chemical analyses were made of
concentrations of individual minerals to better deter-
mine their characteristics.

NONCLAY MINERALS

Although this investigation is primarily concerned
with clay mineralogy, identification of the nonclay
minerals is needed, because they may be either a
source of materials necessary for the formation of
authigenic clays or indicators of detrital origins.

QUARTZ AND PLAGIOCLASE FELDSPAR

Quartz, which is mainly detrital, is found in most
samples but only in small quantities, the largest
amount being the 3 parts in 10 found in sample 47.
This sample was taken in the area where sediments
from Chicago Valley were brought into the lake basin.
In general, the amounts of quartz are highest near the
edges of the basin, at the northern end where the
Amargosa River enters the basin, and near the junc-
tions of the basin with Greenwater Valley and with
Chicago Valley.

Stratigraphically, the greatest amounts of quartz
are found in the youngest sediments above tuff A. Bet-
ween tuff A and tuff B (fig. 3) there appears to be a
general decrease in quantity of quartz, but in the 7.6
meters between tuff B and the intermediate tuff still
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NONCLAY MINERALS 17

sophisticated techniques necessary to determine the
origin of the dolomite. If the dolomite in Lake Tecopa
was precipitated at the same rate as that described by
Peterson, Bien, and Berner (1963) in Deep Spring
Lake, the size of the largest dolomite crystals based on
the age of the lake should be approximately 0.1
micrometers. At least some of the dolomite was found
in the sand- and silt-sized fractions, which indicates
that perhaps some of the dolomite in Lake Tecopa is
detrital, or was formed by the magnesium replacement
of calcium in some of the calcite. Part of the fine-
grained dolomite in the clay-sized fraction could have
been precipitated directly from the alkaline lake
waters. Probably the thin dolomite beds reported by
Sheppard and Gude (1968) were authigenic in origin.

Minor amounts of other carbonate minerals were
also found. A probable identification was made of a
trace of siderite in a couple of samples, and aragonite
was identified in the sample from site 54,
Manganocalcite and rhodochrosite were found in less
than 20 percent of the samples, usually in trace
amounts. They were found not only in the mudstones
of the basin but in the detritus along the Amargosa
River upstream from the basin and in Chicago Valley
to the east. These occurrences would indicate that
these minerals are detrital but it is possible that some
of them that were found in the mudstones were
precipitated from solution.

MAGADIITE

Magadiite was first described by Eugster (1967),
who reported its occurrence at Lake Magadi, Kenya, in
the High Magadi beds of Late Pleistocene to Holocene
age. He, and later Jones, Rettig, and Eugster (1967),
stated that the magadiite was precipitated from
alkaline, silica-rich brines of high pH in waters of a
more dilute precursor of present-day Lake Magadi. Ac-
cording to Eugster (1969), if such brines come in con-
tact with fresh water, a stratification of the lake may
occur producing magadiite saturation at the interface.
Solubility curves for magadiite (Eugster, 1969) sug-
gest a minimum pH value of between 8.5 and 9.0,
which may be the lower limit of pH for precipitation of
magadiite. Bricker (1969) stated that above pH 9,
magadiite would be soluble because of the increased
silica solubility, and below pH 9, its solubility would
be increased owing to decreasing [Na*}/[H*] ratio.

The mineral has since been reported from two
localities in the United States: Trinity County, Calif.
(McAtee and others, 1968), and Alkali Lake, Oreg.
(Rooney and others, 1969). Magadiite is reported in
Lake Tecopa as the third occurrence in the United
States. The sample, T4-93, containing the magadiite

was one of those furnished to the authors by Sheppard
and Gude, who stated (Oral Commun., 1975) that the
deposit is small, probably not exceeding a couple of
cubic yards, including the impurities associated with it
which make up about one-fourth of the sample. The
sample locality was on the main ‘“‘island” in the
southern part of the basin just north of Tecopa; the
deposit was not connected to the other clay beds. The
elevation of the magadiite was estimated to be about
488 m, stratigraphically about the level of tuff A.

The X-ray powder diffraction data from the Lake
Tecopa sample are compared with those of the Trinity
County, Alkali Lake, and Lake Magadi samples in
table 3 and show very good agreement. Comparison of
electron micrographs (figs. 10, 11) of the Lake Tecopa
magadiite and the Trinity County magadiite show the
Trinity County material to be made up of crystals
about 2-2Y; times the size of the Lake Tecopa crystals.
Whereas the Trinity County crystals are square or rec-
tangular, the Lake Tecopa crystals appear to be broken
and irregular and mixed with other detrital minerals
commonly found in the mudstones of the basin.

The precipitation of magadiite in Lake Tecopa is
somewhat analogous to that of the sepiolite, as
described in the section on sepiolite. Apparently the
tuff supplied the silica to the water which was
disseminated into the surrounding detrital beds where
it came into contact with their high pH (about 9.0 or
more) high-sodium pore waters. Bricker (1969) has
stated that under these conditions, but in the absence
of reactive aluminous phases, magadiite could

'precipitate when an incursion of fresh water dropped

the pH to about 9.0 and the [Na‘J[H*] ratio was at
least 5. Any reactive alumina made available in the
dissolution of the tuff would have been used to form
the zeolites found in the tuffs or at the interface of the
tuffs with the detrital beds.

If the Tecopa magadiite was precipitated in the man-
ner described by Eugster (1967) for the waters of Lake
Magadi, then the mineral may have covered a larger
area in the Lake Tecopa basin than is apparent from
the present-day deposit. Subsequent erosion that has
scoured the clay beds and tuffs would have removed
most of the magadiite, or the sodium could have been
leached out leaving behind silica which converted to
microcrystalline quartz (Eugster, 1969) or opaline
silica.

However, it is probable that one or more sodium-rich
springs existed on or near the ‘“island”’ where the
magadiite is found. Chemical analyses of the spring
waters in various localities throughout the basin show
that the sodium content of the springs of the nearby
town of Tecopa is higher than that of any of the others.
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TABLE 3.--X-ray diffraction data for magadiite

[Leaders (---), not found or not reported]

Lake Tecopa, Lake Magadi, Trinity, Alkali Lake,

Calif. Kenyal Calif.? Oreg.3
d I/1, d I/1,4 d d /1,
15.49 100 15.41 100 15.77 15.80 100
7.82 10 7.775 9 7.79 7.82 26
————— ——— mmm— e 7.19 7.25 10
————— —-—— m————— == 6.88 —— e
5.57 6 5.612 4 5.62 5.68 10
5.18 16 5.181 19 5.18 5.21 26
5.01 18 5.007 16 5.01 5.03 21
————— ——— mmmm—m —ee 4.69 ———— -
4.46 25 4.464 18 4.46 4.48 24
4.00 19 4.008 9 4.00 4.00 17
3.90 8 3.909 4 3.93  -=-—- -
3.63 15  —m——-- -— 3.62 3.62 26
3.55 25 3.543 12 3.54 3.53 25
3.43 85 3.435 80 3.43 3.44 74
3.31 70 3.296 35 3.30 3.30 53
3.19 55 3.200 10 3.20 —=——- -
3.14 65 3.146 50 3.14 3.14 57
2.99 8 2.994 3 2,99 ——=-—- -—

lEugster (1967).
2McAtee and others (1968).
3Rooney and others (1969).

This higher sodium content could have been sufficient
to form magadiite at this location, all other factors be-
ing present. In other areas possibly the [Na*}/[H*]
ratio was not high enough to precipitate magadiite
because of the prevalence of magnesium and other ca-
tions.

ZEOLITES AND AMORPHOUS MATERIAL

. The principal zeolites found in the clay formations
are clinoptilolite and phillipsite, with the phillipsite be-
ing found most often in the samples containing signifi-
cant amounts of potassium feldspar. Although zeolites
in small amounts may be found in almost any part of
the study area, the greatest concentrations are found
in or near the tuffs where they were formed. Sheppard
and Gude (1968) made a thorough study of the forma-
tion of zeolites in this area and the reader is referred to
their work for a discussion of their origin. Other
zeolites found in small quantities are erionite and
analcime.

No attempt was made to identify the exact composi-
tion of the amorphous material although it probably is
volcanic ash in various stages of devitrification. Opal,

opaline silica, tridymite, and cristobalite were iden-
tified, which demonstrates that uncombined silica is
abundant in the area. When the sum of the various
mineral constituents of a sample was less than 100 per-
cent the presence of amorphous material was
suspected, whether or not it was indicated by the
typical broad flourescent hump seen between 15° and
30° 26 on X-ray diffractometer patterns. Optical ex-
amination revealing glass shards was accepted as
proof of the presence of amorphous material. Only
when the amount of amorphous material was
estimated to be 2 parts in 10 or more was the sodium
hydroxide leaching technique employed to confirm the
amount present.

SALINE MINERALS

No specific effort was made to sample for saline
minerals except at locality 29 in the present-day playa.
However, a salty taste was noted in some samples; a
salt crust and occasional specks and streaks of gypsum
were observed also in some samples. Saline minerals
were found to some extent in all but a dozen samples.
The amounts varied from a trace to almost 50 percent.
The largest quantities were found on the western side
of the lake at localities 8, 14, 15, and 16, and at the
playa locality, site 29.

Most of the saline minerals were soluble enough to
be leached out of the samples during the fractionation
procedures. Some of the gypsum, however, was not en-
tirely removed during these procedures and was con-
verted to bassanite when the fractions were oven-dried
at 110°C.

Halite is the predominant evaporite; next in abun-
dance is gypsum. Traces of thenardite and gaylussite
were found infrequently. Only one sample contained a
trace of soda nitre, even though, at one time, there
were several nitrate claims in the area (Noble,
Mansfield, and others, 1922).

Because Pleistocene Lake Tecopa is no longer a clos-
ed basin, but has been drained and eroded, it is unlikely
that the present-day saline minerals would approach
the composition of the salts present at the time of the
formation of the authigenic minerals. Rather, they
would reflect modern conditions.

OTHER MINERALS

There were a few nonclay minerals in the mudstones
which were so widely scattered or present in such small
amounts that they will be listed here together
although there may be no relationship among them.
The most widespread of these minerals were the am-
phiboles which usually are present only in trace
amounts in any particular location. Only one or two of
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FIGURE 13.—X-ray diffraction curves showing typical gradation from mica to mixed-layer mica-saponite.









CLAY MINERALS 25

MONTMORILLONITE

Montmorillonite, in the Lake Tecopa area, appears
as an authigenic mineral that has two types of origin.
“Amargosite,”’ found just west of Shoshone, is a soft,
sticky, white montmorillonite which, despite the desic-
cating effect of the present climate, is moist. This clay
was formed by the hydrothermal alteration of a
volcanic ash by warm springs laden with salts
(Melhase, 1926). The warm springs found in the
Shoshone area today may be relicts of the springs that
produced the alteration.

The other type of montmorillonite is found in or very
close to the tuffs deposited in the lake itself and was
formed by the action of the saline lake waters on the
siliceous glass of the tuff. Sheppard and Gude (1968)
reported that they observed glass shards, which had
been altered to zeolites, that were coated with mont-
morillonite. This montmorillonite is restricted and
composes only a small fraction of the clay minerals.
Montmorillonite is readily formed by the alteration of
volcanic ash when alkalis and alkaline earths, par-
ticularly magnesium, are present (Papke, 1969). A
possible reason for the small amount of mont-
morillonite could be that it was formed immediately
after deposition of the ash (Grim, 1968) when the
Na*+K*H* activity ratio was low. Alteration of
silica glasses to montmorillonite was viewed by Hay
(1963) as a hydrolysis reaction releasing silica and
alkali ions into solution and raising the pH, producing
conditions more favorable to formation of clinoptilolite
than to formation of more montmorillonite.

Several samples taken high above tuff A contained
montmorillonite even though the site was not near any
known tuff. These montmorillonites are usually
associated with clinoptilolite. Inasmuch as these two
minerals are commonly derived from volcanic ash,
their presence indicates that an ash fall may have been
deposited after that which formed tuff A. This
evidence supports the conjecture of an ash fall as a
source of silica for the sepiolite found above tuff A.

SEPIOLITE
TECOPA BASIN OCCURRENGE

The Tecopa basin sepiolite is most prevalent in a nar-
row band near the upper limit of the lake beds at about
488-m elevation. This elevation coincides with the
stratigraphic level of tuff A (fig. 15); most of the
sepiolite is found within a meter or two of the tuff,
usually just below its base. A few other, scattered,
sepiolite-bearing sediments were detected near tuff B
(fig. 16), and occasionally throughout the stratigraphic
column above tuff B (fig. 12), especially near the lake
margins (fig. 15). One sample (25 SB), located near an

intermediate tuff deposited 5 m below tuff B, also con-
tained sepiolite, as did several samples in an
anomalous occurrence 7.6-12 m above tuff A.

Sepiolite is one of the most abundant of the possibly
authigenic clay minerals found in the mud and
siltstone beds adjoining the tuffs in the Tecopa basin.
Little or no sepiolite has formed directly in the tuff for-
mations, except occasionally in clay partings which
were deposited in the tuffs. The only other probable
authigenic clay mineral identified in or near the tuffs is
the small amount of montmorillonite mentioned in the
preceding section.

The sepiolite of Tecopa basin does not occur in bulk
form or in pure beds. Electron micrographs of the
suspended material, and X-ray diffraction patterns of
the total samples show the sepiolite fibers to be
dispersed among the detrital and zeolitic minerals.

As shown in the electron micrograph (fig. 6) of the
clay fraction of sample 21, most sepiolite fibers are
about 1 u or less long. However, some sepiolite fibers
more than 2 u long have been observed in sample 1A
(fig. 7). The electron micrograph of a surface replica of
some of the sepiolite-bearing sediment (fig. 8) shows
that the fibers may occur in very small randomly
oriented bundles.

An attempt was made to separate and purify the ap-
proximately 50 percent of sepiolite from sample 21,
but we were unable to remove all the saponite, illite,
and poorly crystalline feldspar. An X-ray diffraction
pattern of the impure sepiolite displays the broad
peaks typical of many poorly crystalline sedimentary-
type sepiolites. The diffraction pattern is compared in
table 4 to that of a well-crystallized sepiolite. Ap-
parently no rapid, large-scale accumulation of sepiolite
has taken place at any time in this area, but rather a
localized deposition in small amounts.

Some sepiolites have been found in arid, alkaline en-
vironments similar to the environment of the Lake
Tecopa beds. Grim (1953) stated that sepiolite is par-
ticularly prevalent in sediments accumulating in
desert lakes containing alkaline waters with slight cir-
culatory movement. Alternatively, Parry and Reeves
(1968), after noting that others (Giiven and Kerr, 1966;
Grim and others, 1960; Eardley and Gvodestsky, 1960;
and Droste, 1961) had reported no sepiolite in their
various reports on desert lakes and playas, suggested
that sepiolite apparently was not as common as Grim
(1953) had previously indicated. They did conclude,
however, that the sepiolite found at Mound Lake, Tex.,
was formed in a saline, lacustrine environment by the
alteration of preexisting montmorillonite. Others who
have reported occurrences of sepiolite in saline,
lacustrine environments include Bradley (1930), Yar-
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TABLE 7.--Lithium and fluorine in samples
outside the boundaries of Pleistocene
Lake Tecopa

[F determined by electrode method by
D. R. Norton and (Mrs.) Johnnie
Gardner; Li determined by atomic
absorption by Wayne Mountjoy]

Sample Localities Li
No. (percent) (ppm)

53----  Chicago Valley 0.48 330

61A---  Amargosa River, .58 440

29 kilometers
upstream of
Pleistocene
Lake Tecopa.

zhemshkii (1949), Hardie (1968), and Papke (1972). In-
asmuch as sepiolite is found in some saline, lacustrine
environments but not in others, apparently a par-
ticular set of circumstances other than the basic en-
vironment is necessary for its formation.

PREVIOUS WORK ON SEPIOLITE

Siffert and Wey (1962) produced at room
temperature a fibrous clay of the sepiolite type by reac-
ting Mg*? ions with silica in solution. The initial pH of
the silica-magnesia solution was 11.20 and the final pH
was 8.73. Wollast, Mackenzie, and Bricker (1968)
reacted sea water with aqueous silica and produced a
hydrated magnesium silicate compositionally and
structurally similar to sepiolite. They also
demonstrated that with a rise in pH of alkaline lake
waters that have been concentrated by evaporation
sepiolite may be precipitated if sufficient sources of
magnesium and silica are available and if the dissolved
silica is not removed from the waters by diatoms
through biochemical processes. However, even if the
silica is available, if the pH doesn’t rise above 8.0,
sepiolite doesn’t form, even matastably, but the
waters tend to become saturated with amorphous
silica.

Conversely, if silica activity is below the sepiolite
saturation level and the pH is near 10, the magnesium
may precipitate as brucite or hydromagnesite, or,
under the proper conditions, even as dolomite. At a
later time, if silica is reintroduced to the interstitial
waters by dissolution of diatoms or nearby volcanic
ash and dispersion of the resulting silica by circulating

waters, then sepiolite may form as an authigenic
mineral when the silica combines with the earlier form-
ed magnesium mineral or with magnesium in solution.

Another determinative factor is the presence or
absence of reactive aluminous phases in the waters or
sediments. If ionic alumina is present, the silica and
magnesium are more likely to combine with it to form
alumino-silicates, such as chlorite or montmorillonite,
rather than sepiolite.

In an attempt to synthesize sepiolite, Mumpton and
Roy (1958) experimented with gel mixtures of the ap-
proximate composition of the average sepiolite using
MgO (38.1 percent), SiO; (59.6 percent), Al:Os (2.3 per-
cent), and H,0. In about 100 runs at various
temperatures and water pressures, they produced only
montmorillonoids, talc, silica, or chloritic phases, but
no sepiolite. They had started with the essential ingre-
dients with which Hast (1956) and later Wollast,
Mackenzie, and Bricker (1968) synthesized sepiolite,
except that Mumpton and Roy added Al,O; to the
system. This would indicate that the presence of
alumina in the mixture inhibits the formation of
sepiolite from solution. Millot (1960), Isphording
(1973), and Heron and Johnson (1966) have proposed
an authigenic origin by direct precipitation for
sepiolite in the natural sediments that they have
studied. Precipitation could occur where the pH and
MgO contents were high but Al,O; was low or absent.
In addition, Wollast, Mackenzie, and Bricker (1968)
pointed out that sepiolite was commonly associated
with carbonate sediments where alumina was low at
the time of their sedimentation but not associated with
shales where alumina was high.

Therefore, it is evident that in order to form sepiolite
authigenically, we need a source of magnesium, a
source of silica, a pH higher than 8.0, and little or no
reactive alumina present.

MODES OF SEPIOLITE FORMATION

Several possible sources were considered for the
sepiolite in the Tecopa basin sediments:

1. Clastic deposition was ruled out because most of the
sepiolite was concentrated in the vicinity of the ash
beds; a more uniform distribution throughout the
strata would be expected if the sepiolite were of
clastic origin. Also, no sepiolite was found in the
sediments surrounding the basin.

2. Direct diagenesis from the volcanic ash is unlikely.
Little or no sepiolite was found within the tuff for-
mations. It occurred most frequently within a few
feet above or below the ash beds. Furthermore, none
of the optically examined volcanic glass shards
showed any alteration to sepiolite.
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3. A transformation of a parent smectite clay to a
sepiolite, as suggested by Parry and Reeves (1968)
for sediments in pluvial Mound Lake, Tex., was also
considered. The dominant smectite mineral, a high-
magnesian trioctahedral saponite, is found in all sec-
tions and stratigraphic levels of the sediments of
Tecopa basin whereas sepiolite is not, the sepiolite
being principally detected near the tuff beds.
Although we do not believe that the saponite was
transformed directly to sepiolite, we do not rule out
the possibility that slight dissolution of the mineral
in a high-pH environment may have supplied some
of the silica and magnesium necessary to
authigenically form the sepiolite.

4. The sepiolite may have been precipitated directly
from solution. We contend that the principal mode of
sepiolite precipitation involved postdepositional fac-
tors as well. Silica, in solution or in the form of a
natural gel, may have combined with a previously
formed magnesium mineral in solid or colloidal form,
or may have possibly reacted with magnesium in
solution in a high-pH, postdepositional environment.
The latter possibility seems the most probable.

One way in which sepiolite precipitation might occur
involves the direct combination of silica and
magnesium as they mix in solution in the lake waters
after being brought in from the lake’s drainage basin.
Papke (1972) suggested a sequential precipitation of
dolomite and sepiolite in the Amargosa Flat, north of
the study area. In this playa basin the magnesium in
solution probably increased in concentration through
evaporation until it began to precipitate out as
dolomite. Then slowly increasing silica in solution com-
bined with the magnesium and also precipitated
sepiolite to form a combined bed about 1.2 m thick. A
small percentage of detrital minerals was also included
in the bed, and this, combined with a lack of internal
bedding in the formation, indicates “rapid accumula-
tion or, at least, constant conditions during
deposition.”” Apparently this did not occur in the Lake
Tecopa basin as no massive beds of this sort, contain-
ing sepiolite, were identified in its sediments.

Jones and VanDenburgh (1966) have shown that
even though the waters of Lake Abert, a closed basin
lake in southern Oregon, contained high concentra-
tions of magnesium and silica in solution, no sepiolite
or even dolomite was spontaneously precipitated
therein. Droste (1961) has also found that many of the
playa and closed basin lakes of southern California
contain no sepiolite in their sediments. Therefore, even
though the ingredients may be there, sepiolite isn’t
necessarily formed in these lakes in the manner
described by Papke. Because of the formation in Lake

Tecopa of only small quantities of sepiolite, most of
which was adjacent to the tuff beds, widespread
precipitation in open water seems unlikely.

SOURCES OF MAGNESIUM AND SILICA

Sheppard and Gude (1968) have reported the
presence of thin beds of dolomite in the Tecopa
sediments: one below tuff B and one between tuffs B
and A, both toward the central part of the basin. If
there were any dolomite beds in the younger strata
they have since been removed by erosion. The presence
of the two thin beds would indicate that at various
times the lake waters had a high concentration of
magnesium in solution and a pH of well over 8.0 in
order to precipitate the dolomite (Peterson and others,
1963, and Skinner, 1963), or to convert calcite to
dolomite. In addition, chemical analyses of the
unaltered shards of the tuffs A and B showed a
magnesium oxide content of 0.5 to 0.8 percent, which
could become available on dissolution of the ash (Shep-
pard and Gude, 1968). A magnesium content of 22 ppm
was also determined in the spring water of the basin
(Sheppard and Gude, oral commun., 1976). Additional
magnesium in solution or as detritus was probably
brought in from the north through the Amargosa
River drainage areas which contains dolomite forma-
tions and significant quantities of the high-magnesium
smectite, saponite. When the ash and clay beds were
deposited, this magnesium from all these sources was
incorporated into the sediments and interstitial water,
possibly as brucite or hydromagnesite in solid or col-
loidal form if the pH became high enough, or as solu-
tion with a high concentration of Mg ions and a fairly
high pH. Further concentration of magnesium would
occur during periods of evaporation of the lake waters.
It is evident that a sufficient supply of magnesium was
available for the precipitation of sepiolite if other en-
vironmental conditions were propitious.

An adequate source of silica in solution is also readi-
ly available in the ash beds which were deposited at in-
tervals in the lake basin and surrounding countryside.
Alexander, Heston, and Iler (1954) have shown in
laboratory experiments that different forms of amor-
phous silica, including colloidal silica, will approach a
constant solubility concentration in water in the range
of 100 to 140 ppm at a temperature of 25°C. The solu-
ble silica is in the form of the monosilicic acid Si (OH)..
The solubility of the silica is almost unaffected by pH’s
below 9 but increases rapidly as the pH climbs,
reaching about 400 ppm at a pH of 10 and about 3,600
ppm at a pH of 11. An increase in temperature will also
increase the amount in solution and the rate of solubili-
ty of silica. They also noted, as did Krauskopf (1956),
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that at a pH over 9.0, colloidal, low-molecular-weight
polysilicate ions are in equilibrium with the soluble
monosilicic acid. As the soluble silica is removed from
the solution by precipitation, the colloidal polysilicate
spontaneously reverts to the soluble form and
replenishes the supply of available silica in solution.
Therefore, we postulate a constantly renewable source
of soluble silica available in the vicinity of the ashfalls
in the beds of Lake Tecopa when the pH was high ow-
ing to evaporative concentration. We do not know the
ultimate concentration of the silica in the lake but
some recent studies of alkaline carbonate brines in
closed basins have determined natural waters to con-
tain as much as 2,700 ppm silica (Jones and others,
1967).

SEPIOLITE FORMATION IN LAKE TECOPA

As previously indicated, sepiolite is not found within
the tuffs of the Tecopa basin but is most prevalent in
sediments immediately adjacent to both the unaltered
ash and the zeolitized ash. The question arises as to
why sepiolite is absent from the ash but present in the
other two environments.

The mudstones, siltstones, and volcanic ash were
probably deposited in waters with a pH of 9 or higher.
Some intermixing of the ash and the previously
deposited detritals occurred at their interface. Subse-
quent evaporation and concentration tended to in-
crease the salinity and pH in a downdip direction
toward the center of the basin. However, owing to rain,
snow, or the inflowing waters of the Amargosa River,
incursions of fresher water into the lake basin flushed
out the excess alkaline cations and lowered the pH of
the outer, more-exposed, edges of the ash beds. This
left the outer edges unaltered even as zeolitization
started in downdip parts of the bed. In addition, there
were periods of time when evaporation of the lake
limited the waters to the central part of the basin so
that the edges of the ash bed were not immersed in
high-pH waters. Authigenic sepiolite, however, was
still able to form beneath the unaltered ash.

Undoubtedly, in times of fairly high pH (about 8)
some dissolution of the ash occurred and silica and the
alkalis were disseminated, by circulating waters,
downdip and into the detrital beds below and above
the ash bed. The concentration of silica increased to
saturation in the ash but the pH was not high enough
nor the concentration of the magnesium great enough
to precipitate sepiolite. With an influx of fresh water
the pH dropped throughout the system. The soluble
silica was then in a supersaturated state so it began to
precipitate out as a colloid or as sepiolite when it came
in contact with the magnesium-saturated, high-pH

pore waters in adjacent detrital beds. Some sepiolite
also may have formed over long periods of time when
initially admixed ash dissolved in the high-pH, original
pore waters of the adjacent beds and combined there
with magnesium in solution to precipitate out.

Inasmuch as alumina does not readily go into solu-
tion at a pH of less than 9.5, probably insufficient
alumina was present to precipitate zeolites either in
the unaltered tuff or in any significant quantity in the
adjacent beds where sepiolite occurred, as seen in the
table of mineral analyses (table 2). What small
amounts of zeolite were formed with the sepiolite pro-
bably were precipitated from the original pore waters
which dissolved the admixed volcanic glass to provide
the necessary alumina, silica, and the alkali cations.
Phillipsite was most commonly found in the zeolitized
tuffs or at their interface with the siltstones and
claystones of the adjacent beds. Clinoptilolite was the
zeolite most often found with sepiolite, sometimes with
and sometimes without phillipsite.

Downdip in the basin the ash beds were zeolitized
owing to more constant exposure to high-pH waters.
Dissolution of the ash (and concentration of the
waters) had produced a pH of 9-10 and the necessary
soluble ingredients, silica, alumina and the alkalis, for
formation of the various zeolites; but sepiolite didn’t
form in the ash bed owing to the presence of alumina.
All or most of the alumina was used in forming zeolites
or other aluminosilicates within the tuffs, or at the in-
terface of the tuffs and the adjacent beds, as shown by
Sheppard and Gude (1968). After removal of the
alumina the waters disseminating into the adjacent
beds were still supersaturated with silica. A drop in pH
then caused the silica to form a colloid or to combine
with the available magnesium and precipitate out as
sepiolite in the pore waters near the zeolitized tuff. An
alternative method to direct precipitation of the
mineral from solution is as follows: Silica has a great
affinity for magnesium which would tend to adsorb on
the colloidal silica surface to form a hydrated
magnesium silicate. Later desiccation could remove
some of the water to form sepiolite.

Sepiolites found in sediments near other tuffs in the
basin sequence probably were formed in the same man-
ner as those described above. However, some sepiolite
detected in other parts of the basin may have a dif-
ferent genesis.

Several samples, taken from sediments approximate-
ly 7.6-9.1 m, and one at 12 m above tuff A, also con-
tained sepiolite. Sample 4, containing approximately
40 percent sepiolite was taken about 1.3 km southwest
of Shoshone, in the northern part of the basin and 7.6
m above the tuff A. It is possible that a thin ash bed
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might have been deposited in the lake waters at that
time, to act as a silica supply for sepiolite. No trace of
one was found by the authors at this location or at the
other locations around the basin at that altitude where
the samples containing sepiolite were collected.
However, several nonsepiolite-bearing samples taken
at those altitudes, 2, 20A, 20B, and 24, contained dioc-
tahedral montmorillonite and clinoptilolite, both of
which are products of ash devitrification.

Under the proper conditions of pH, magnesium con-
centration, and silica saturation, it is possible that at
the locations listed in the preceding paragraph and
other anomalous locations far from ash beds a direct
precipitation from solution may have occurred as
described by Papke (1972). However, no real evidence
of this was found. An alternative possibility for a silica
source for sepiolite precipitation would be the presence
of abundant diatom colonies in the lake. Sheppard and
Gude (1968) have stated that 42 species of diatoms
were identified in their fossil locality 5 about 1.6 km
northeast of the site of sample 4, at about 488+ m
altitude. Some of the diatoms were identified as ‘“‘fresh
water”’ types which would correlate with their location
in the north end of the basin where the Amargosa
River entered, supplying fresh water from a con-
siderable drainage area to the north.

A flourishing colony of diatoms might remove a con-
siderable quantity of silica from solution in the lake
waters (Phillips and VanDenburgh, 1971). If the supp-
ly of fresh water diminished radically, the salinity
would rise armd kill off the colony causing decay of the
organisms and a rapid return of silica to the environ-
ment. With a high enough pH and source of
magnesium, a localized precipitation of sepiolite might
occur wherever a colony had been located. Sample 37 in
the same approximate area as diatom fossil locality 5,
and altitude as sample 4 (7.6 m above A tuff), has an
ostracode bed that indicates a fresh-water environ-
ment. Sample area 39 on the east side of the basin at
approximately the same altitude as sample area 4 also
contains fresh water ostracodes, as well as a small
amount of sepiolite. Two other sample sites, 50 and 56,
containing sepiolite, are in an area where fresh water
would intermittently incur and are at about the same
altitude as the site of sample 4. Therefore, although
diatoms were not actually found at the sepiolite sites
at that lake level, 7.6-9.1 m above tuff A, we cannot
rule out the possibility that they were a source of the
necessary silica for sepiolite precipitation in the high-
pH, magnesium-concentrated pore waters of a later
lake phase.

On the basis of our laboratory experimentation and
field evidence we conclude that the sepiolite found in

the Tecopa basin is of authigenic origin. The volcanic
ash beds, and possibly in some cases fossil diatoms,
supplied the necessary silica in solution or colloidal
form to combine with magnesium in a high salinity,
high-pH lake-water environment. Sepiolite may have
precipitated directly from solution in open lake waters
at various times after the deposition of tuff A but no
proof is available.

DISCUSSION
SEQUENCE OF EVENTS

During the middle to late Pleistocene, the Amargosa
River was dammed by alluvial fan deposits south of
the present-day site of Tecopa, Calif. (Sheppard and
Gude, 1968). Waters began to accumulate behind the
dam with simultaneous deposition of fine-grained
detritus. Figure 12 shows that the clay minerals
deposited below the tuff C were mostly micas (or
illites), saponite, and mixed layered material. Some
small beds of volcanic ash were laid down at this time
also.

Later, the ash fall which subsequently produced tuff
C was laid down, followed by the deposition of more
detrital mudstones. The deposition of these mudstones
was also interrupted periodically by light ash falls, one
of which was large enough that it has been termed the
“intermediate tuff”’.

The ash fall which produced tuff B was next
deposited. By this time the concentration of the
magnesium and the pH of the lake waters had increas-
ed to the point that some sepiolite was being formed by
the reaction of the magnesium-rich waters and the
silica from the ash falls which had been taken into solu-
tion by the lake waters. The salinity of the water would
not have increased very rapidly at first but as the lake
grew and covered a greater area, the enlarged surface
area would have increased evaporation to produce
greater salinity.

More detrital material was deposited as mudstones,
followed by another ash fall which produced tuff A.
Again, magnesium-bearing waters of the lake combin-
ed with the plentiful silica to produce even more
sepiolite than was produced in associaton with tuff B.
This was the last major ash fall although the presence
of montmorillonite and sepiolite above tuff A indicates
that there later was at least one minor ash fall. Detrital
material was deposited as long as the lake existed.

CONCLUSIONS

Most of the minerals which make up the mudstones
of the Tecopa basin are detrital in origin. They consist
of quartz, plagioclase feldspar, some of the calcite and
dolomite, and the clay minerals mica, illite, chlorite,
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the lithian saponite and mixed layered combinations of
these. All these minerals are found areally throughout,
and at all stratigraphic levels of, the Tecopa sediments
as well as in the basin drainage area. This would tend
to preclude an authigenic origin for them in the basin.

The clay minerals brought into the lake as detritus
from the drainage area were not affected by diagenesis.
No differences can be detected between them and the
clay minerals found along the tributaries. If there were
any dissolution or alteration of the clays, the amount
was negligible. This corroborates the findings of
Droste (1961) who, after comparing the clay minerals
from 45 playas in the Mojave Desert with the clay
minerals from surrounding areas, concluded that clays
deposited in alkaline lakes reflected the source rocks
rather than diagenesis.

Possibly some of the lithian saponite was formed by
diagenesis of montmorillonite, as suggested by Papke
for the Amargosa Flat sediments; however, most of it
is considered to be detrital.

The minerals that we consider to be authigenic in-
clude much of the calcite and dolomite, sepiolite,
magadiite, potassium feldspar, montmorillonite,
zeolites, and the saline minerals.

During this entire process, the calcium and CO, in
the lake waters were combining to precipitate the
calcite which is almost ubiquitous. It is especially
abundant at the north end of the lake where the
calcium-bearing waters of the Amargosa River came
into contact with the carbonate waters of the lake. The
calcite is less abundant in the southwestern part of the
lake near the entrance of Greenwater valley.

Only small amounts of dolomite are found in the lake
beds although magnesium was probably present in its
waters throughout the life of the lake and became more
concentrated as the salinity of the waters increased.
Dolomite is not readily precipitated from magnesium-
rich solutions (Peterson and others, 1963, Peterson and
others, 1966, Clayton and others, 1968), although
calcite is readily precipitated if calcium is present. Any
dolomite that was precipitated would have been form-
ed very slowly. The thin beds of finely crystalline
dolomite recognized in the basin by Sheppard and
Gude (1968) probably are authigenic in origin. Their
presence would imply water conditions of high salinity
and pH and a good concentration of magnesium.

The formation of authigenic sepiolite also requires a
special environment as shown in experimentation by
Siffert and Wey (1962), Wollast, Mackenzie, and
Bricker (1968), and Mumpton and Roy (1958). It needs
a source of silica and of magnesium in high-pH waters
but with the absence of reactive aluminous phases. In
the closed basin of Tecopa, the pH of the lake waters
reached at least 8.0, owing to evaporation and the con-

centration of magnesium and silica and various salts.
The dissolution of volcanic ash, which periodically was
deposited in the lake, then supplied the necessary silica
to combine with magnesium in forming the sepiolite.
The reactive alumina, which was also released by
dissolution of the ash, served a twofold purpose. First,
it was essential in the formation of the zeolites within
the tuff beds and at their interface with the detrital
beds. Second, the alumina prevented the precipitation
of sepiolite within the tuffs but did not inhibit the
dissemination of the silica-supersaturated, and by then
alumina-depleted, waters into the surrounding
sediments where sepiolite formed in the high-pH,
magnesium-saturated pore waters. The dissolution of
diatoms may have supplied the necessary silica for
some sepiolite formation where volcanic ash was not
available.

Grim, Kulbicki, and Carozzi (1960) stated that the
clay minerals rich in magnesium, such as sepiolite, pro-
bably would not form in an environment of high-
sodium content. However, in the mudstones of Lake
Tecopa the sepiolite content is well established,
dolomite is present in small quantities, and yet
magadiite, a hydrous sodium silicate which is
precipitated from silica-rich sodium waters (Eugster,
1969), is found in one area at about the same
stratigraphic level as the sepiolite.

Determination of how widespread the magadiite for-
mation was in the basin because of subsequent erosion
and leaching action is impossible; but, because of the
magnesium content of the lake waters and because of
the occurrence of magadiite only in one part of the
basin, we conclude that this was a local occurrence
caused by the presence of sodium-rich springs in this
area making contact with the silica-bearing lake
waters.

Authigenic, dioctahedral montmorillonite is not as
widespread in basin sediments as detrital, trioc-
tahedral smectite saponite. It is found in a few
localities where diagenesis of the volcanic ash has oc-
curred to form clinoptilolite and montmorillonite.
Sheppard and Gude (1968) also reported some mont-
morillonite coatings on shards associated with other
zeolites such as phillipsite. The other occurrence of
montmorillonite, ‘‘amargosite,” is caused by the
hydrothermal alteration of volcanic ash by hot-spring
waters. This unique mineral formation was found in
the vicinity of the town of Shoshone.

Other authigenic minerals, such as the zeolites and
potassium feldspar, are found scattered throughout
the basin in small quantities in the detrital sediments,
and larger more concentrated amounts are found in or
near the tuffs. Sheppard and Gude (1968) have describ-
ed the formation of these minerals in their paper on the
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authigenic silicates in the tuff formations of Tecopa
basin.
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